使用静电计进行微弱电流测量
发表时间:2024/08/07 23:35:37  作者:产品动态 

  像数字万用表(DMM)一样 ,吉时利静电计是用于测量电荷、电流、电压和电阻的仪器。然而,静电计具备10Fc的电荷测量分辨率,100 aA的电流分辨率,以及高达200T的测量能力,超越了标准的数字万用表。静电计用于需要极端灵敏度或者需要多种类型的灵敏电子线路测量的场合。

  电阻最常见的测量手段是数字万用表,它的测量范围高达约200 M。然而,在某些情况下,必须精确测量千兆欧和更高范围的电阻。这一些状况包括诸如以下的一些应用:表征高兆欧和吉欧级电阻、确定绝缘体的电阻率和测量印刷电路板的绝缘电阻。这些测量可借助静电计实现,它可以同时测量非常低的电流和高阻抗电压。

  ■绝缘电阻绝缘电阻是施加在两电极之间的直流电压与电极之间总电流的比值。绝缘电阻测量的例子包括测量在印刷电路板上的走线之间的漏电流,或者一个多芯电缆的导体之间的电阻。

  ■体电阻率测量体电阻率是指穿过1cm3的在允许电压下不导电的材料的电阻,并表示为欧姆-厘米,cm)。

  ■表面电阻率测量表面电阻率是绝缘材料的表面上两个电极之间的电阻,并且以欧姆为单位表示(通常为了清晰表述,单位采用欧姆每方块,即□)。

  电容器在电子科技类产品的所有的领域都很有重要的应用。从定时电路到采样和保持应用,我们都依赖于电容以一个几近完美的方式运行。然而,在许多情况下,复杂的电化学相互作用导致电容无法达到完美。其中一个不太理想的特性便是漏电流,或者说绝缘电阻(IR)。

  电容漏电流可以用绝缘电阻来表征,单位是兆欧-微法(MF),由电阻值除以电容值来计算,或者表示为一个特定电压下的漏电流。6517B型静电计对此应用特别有用,因为它可以显示电阻或漏电流,并且输出高达1000V直流电压激励。

  电容器的漏电是通过向待测电容施加一个固定电压并测量产生的电流来实现的。漏电流将随时间呈指数衰减,因此在测量电流之前,施加电压一定要达到一个已知的时间周期(“保压”时间,“soak” time)。如果电路中包含一个正向偏置的二极管(D),测量性能将得到改进,如下图所示。该二极管的作用就像是一个可变电阻,电容器的充电电流很高时其电阻变低,之后当电流随时间减小时,电阻值增高。串联电阻阻值可以大幅度减小,因为它只需在电容器被短路时防止电压源过载和二极管受到损坏。

  出于统计的需要,可以经常通过测试少数的电容器来生成有用的数据。显然,手动执行这些测试是不切实际的,因此就需要一套自动测试系统。下图示出这样一个系统,它采用一个6517B型静电计/高阻计和安装在开关主机中的开关板卡。6517B型静电计对此应用特别有用,因为它可以显示电阻或漏电流,并且输出电压高达1000V的直流激励。

  电阻最常见的测试仪器是数字万用表,它的测量范围高达约200 M。然而,在某些情况下,必须精准测量千兆欧和更高范围的电阻。这一些状况包括诸如此类的一些应用:表征高兆欧级电阻、确定绝缘体的电阻率和测量印刷电路板的绝缘电阻。这些测量利用静电计来实现,它可以同时测量非常微弱的电流和高阻抗电压。

  ■连接器的绝缘电阻考虑到当今日益缩小的电路几何尺寸和更高频率的电子信号,隔离性能是可靠性和串扰方面的一个重要考虑因素。隔离性能通常是通过将电压施加到连接器的两个引脚之间,并测量相应流过它们之间的电流来测得。测出的电阻和预定的阈值作比较。如果电阻水平太低,该连接器将被丢弃。图7示出一个连接器的等效电路,隔离电阻记为Riso。当测试阻值非常的器件时,测得的电阻可能会随着所施加的电压的变化而出现显著变化,这一效应以电阻电压系数表征。

  ■ PCB表面绝缘电阻印刷电路板(PCB)的低表面绝缘电阻(SIR)会大幅度的降低板上电路的性能。影响电路板的表面绝缘电阻的因素包括电路板使用的材料,焊料掩蔽层或保形涂料等涂层的存在、电路板清洁度,以及相对湿度。测量到的绝缘电阻通常为107至1016之间。图6显示了一个用于测量PCB表面电阻的测试设置。

  6514型和6517B型静电计的特色在于通过前面板轻松地进行类似DMM的操作,单个按钮即可控制重要功能,例如电阻测量。它们也能够最终靠一个内置的IEEE-488接口控制,这使得人类能借助一个计算机控制器通过总线对所有功能进行编程控制。

  然而,不同于数字万用表的是,静电计拥有较低的偏置电流和输入负担。6514型或6517B型的的输入偏置电流均微弱电流测量能力。

  可以提供两种扫描卡,用于简化多路信号的扫描,例如电容器或其他电路生产中的测试。每一个扫描卡都可以很轻松地地插入仪器背面面板的备选插槽。6521型扫描卡可提供10通道的微弱电流扫描。6522型扫描卡提供了具有高阻抗电压开关或微弱电流开关能力的10条通道。

  6517B型采用交变极性法测量阻抗/电阻率,这几乎消除了样品中的任何背景电流的影响。背景电流的一阶和二阶漂移也被对消了。交替改变所施加的电压的极性,通常实现一个高度可重复的、精确的电阻(或电阻率)测量。